Tanta university
Faculty of engineering

third year

forming machines Date: 9/6/2013 time: 3 hours

Mech. Design & Prod .Eng. Dept.

Answer all the following questions

Question 1:

- 1 Classify the forging processes?
- 2- State the types of forming machines?
- 3- What are the types of forging hammers and presses with net sketch?
- 4- Compare between the open and closed die forging processes?
- 5- What are the Two Categories of Casting Processes?
- 6- What are the types of Die Casting Machines with drawing?

Question 2:

- 1- Define the flash and state its function?
- 2- What are the steps of closed die forging operation with drawing?
- 3- Mention the considerations which must be predicted when designing apart by the closed die forging
- . 4- What are the basic types of the metal flow in forming process?
- 5- What are the Types of Patterns in casting process?
- 6- state with drawing the Steps in permanent mold casting process?

Question 3:

- 1- State the basic considerations for the perform operation?
- 2 What are the required properties for the die material and state the basic die materials?
- 3- How can you increase the die life?
- 4- What are the basic indications for die failure?
- 5- A block of lead $25*25*150~\text{mm}^3$ is pressed between flat dies to a size $6.25*100*150~\text{mm}^3$ if the uniaxial flow stress σ_0 = $6.9~\text{MPa}~\mu$ = 0.25 determine the pressure distribution over the 100 mm at x=20 mm and 50 mm and the total forging load in the sticky friction condition .

به ت منیا که میمف

TANTA UNIVERSITY

MACHINE DESIGN

FACULTY OF ENGINEERING

(MPD 3219) Third Year

Production Eng. & Mech. Design Dept.

Time: Three hours.

Date: 26/5/2013

Total Mark: 75 Marks.

2nd - Term Examination

Tables can be used.

Q-1 (25 Marks)

(a)- Remember five recommendations to develope the gearing diagram to achieve Min. possible dimensions.

(b)- A speed – box having 12- speeds (31.5 – 45 – 63 – 90 - - - 1410 R.P.M.) is powered by one speed motor (1440 R.P.M.) & power is 5 KW. Suppose the speed of the first gear box shaft is 1000 R.P.M., design the number of the gear teethes, assuming any required data based on your study.

Q-2 (25 Marks)

From the data & results of $\,Q-1\,$, determine the required spur gear module & the working drawing of the pinion (smallest gear) if the following data can be use :

$$Kd = 1.5$$
 , $\Psi = 20$,

Standard module: 2, 2.5, 3, 4, 5, 6,8 mm.

Material: St 45, [6b] = 20 Kg/mm2 & [6 con.] = 4760 Kg/cm2

Relations: Y = 0.154 - 0.912 / Z

 $m = [0.64 \text{ Mt. Kd / Y. Zp } [6b]]^{\frac{1}{3}}$

б con. =(34000 / A . i)[N . Kd (1+ i) 1/3 / ng . b]

Q-3 (25 Marks)

Select the ball bearing for the lower & upper bearing of the vertical shaft, shown in figure, driven by a V-belt. Base the selection on steady load and life of 2000 Hours for 90 % of a group of bearings. The min. shaft diameter based on strength at the lower & upper bearing is 25 mm. The shaft rotates at 300 R.P.M.

Fa = Estimated weight of shaft & pulley = 1.5 KN.

Good Luck & !! Dr. Gaber Sheha

عمال فالنغ طسهالتاج

Department: Prod. Engineering and Mech. Design Total Marks: 85 Marks

Faculty of Engineering

Course Title: Automatic Control

Course Code: MPD 3223

Year: 3rd Prod Eng.

Date: 30-05-2013

Allowed time: 3 Hrs

No. of Pages: (2)

Answer All The Following Questions:-

[Note: Each question carries 17 Marks]

Question (1):- (17 Marks)

(a) If the overall transfer function of a closed-loop control system is in the form:

 $\theta_{\rm o}/\theta_{\rm i} = 386/(0.125 \text{ s}^2 + 2.55 \text{s} + 386)$

and the input θ_i is a unit step signal, Find out the following:-

(1) Rise time(t_r), (2) Peak time(t_p), (3) Setting time(t_s) if the response allowance is + or -5%,

(4) Maximum peak(M_p), (5) Steady-state error(ε_{ss}).

(9 Marks)

(b) Find the range of gain (K) for the following system that will cause the system to be stable,

$$\frac{Y(S)}{R(S)} = \frac{K}{S(S^2 + S + 1)(S + 4) + K}$$

(8 Marks)

Question (2):- (17 Marks)

(a) By using Laplace transform technique, solve the following initial value problem and find the time response y(t), of the system:

$$\dot{Y} + 2\dot{Y} - \dot{Y} - 2Y = 0$$
, where $Y(0) = 1$, $\dot{Y}(0) = \dot{Y}(0) = 2$.

(9 Marks)

(b) Obtain the time response y(t) of the following system by applying the inverse Laplace transform:

$$Y(s) = (2s^2+7)/[(s^2+4)(s+3)].$$

(8 Marks)

Question (3):- (17 Marks)

Reduce the following block diagram shown to a single block diagram and hence determine overall transfer function(or C/R).

Figure of Question(3)

Question (4):-(17 Marks)

(a) A process plant consists of two tanks of capacitance C_1 and C_2 . If the flow rate into the top tank is Q3, find the transfer function relating this flow to the level in the bottom tank. Each tank has a (9 Marks) resistance R in its outlet pipe. (Consider the tanks to be noninteracting.)

(b) For the shown valve, derive the overall transfer function (\hat{q}_o/P_i) .

(8 Marks)

Question (5):-

(17 Marks)

(a) Apply Nyquist criterion to examine the relative stability of the open-loop transfer function given in the form:- $GH = \frac{10}{(D+1)(D+2)}$

(b) If the characteristic equation of a closed-loop control system is in the form:

$$S^6 + 6S^5 + 37S^4 + 72S^3 + 327S^2 + 162S + 675 = 0$$
.

Determine the stability condition of this system by use of Routh stability method. (10 Marks)

(انتهت الأسئلة)

(7 Marks)

Department: Production Engineering & Mechanical Design Total marks: 90 Marks

Course Title: Forming Technology

Course Code: MPD 3222 Year: 3rd Year Production

Date: May 2013 Allowed time: 3 hrs. No. Of pages: 2

Answer all the following questions:

Question1.

(15 marks)

- a. What are the important variables in the design of bulk forming process?
- **b.** Consider a load $1" \times 1" \times 6"$ to be pressure between flat dies to $1/4" \times 4" \times 6"$ as shown in figure. The flow stress = $\sigma_0 = 1000$ psi. $\mu = 0.25$ Calculate maximum pressure and forging load for the following:
 - (i) Sliding friction
 - (ii) Sticking friction

Question2.

(20 marks)

- a. What do you know about types of rolling based on work piece geometry and work temperature?
- **b.** Draw with freehand the steel products made in a rolling mill?
- **c.** Draw the rolling mill configuration for thread rolling?
- **d.** Mention the advantage of thread rolling over the thread cutting machine?

Question3.

(20 marks)

- a. What are some of the attractive features of the cold extrusion process?
- **b.** What are the unique capabilities and special limitations of hydrostatic extrusion?
- c. Draw schematic illustration of roll straightening of a drawn round rod?

Question4. (20 marks)

a. What is spring back? What determines the amount of spring back in bending?

- **b.** What is the major limitation of the super plastic forming of sheet metal? What are some of the attractive features?
- c. Use a neat sketch to indentify the wire drawing dies?

Question5. (15 marks)

- a. What is the defect in rod and wire drawing?
- b. Determine the draw stresses to produce a 20% reduction in a 10mm stainless steel wire. The flow stress is given by $\sigma_0 = 1300 \ \epsilon^{0.3}$ MPa. The die angle is 12° and $\mu = 0.09$. Also, determine the largest possible reduction.

With my best wishes